Kamis, 01 Desember 2011
Kamis, 24 November 2011
Kamis, 17 November 2011
PERSYARATAN INSTALASI LISTRIK
Maksud dan tujuan Persyaratan Umum Instalasi Listrik ini adalah untuk terselenggaranya dengan baik instalasi listrik. Peraturan ini lebih diutamakan pada keselamatan manusia terhadap bahaya sentuhan serta kejutan arus, keamanan instalasi listrik beserta perlengkapannya dan keamanan gedung serta isinya terhadap kebakaran akibat listrik.
1.) Persyaratan ini berlaku untuk semua instalasi arus kuat, baik mengenai perencanaan, pemasangan, pemeriksaan dan pengujian, pelayanan, pemeliharaan maupun pengawasannya. 1.) Persyaratan ini berlaku untuk semua instalasi arus kuat, baik mengenai perencanaan, pemasangan, pemeriksaan dan pengujian, pelayanan, pemeliharaan maupun pengawasannya.Persyaratan umum instalasi listrik ini tidak berlaku untuk :
a) Bagian dari instalasi listrik dengan tegangan rendah yang hanya digunakan untuk menyalurkan berita dan isyarat.
b) Bagian dari instalasi listrik yang digunakan untuk keperluan telekomunikasi dan pelayanan kereta rel listrik.
c) Instalasi listrik dalam kapal laut, kapal terbang, kereta rel listrik, dan kendaraan lain yang digerakkan secara mekanik.
d) Instalasi listrik dibawah tanah dalam tambang.
e) Instalasi listrik dengan tegangan rendah yang tidak melebihi 25 volt dan dayanya tidak melebihi 100 watt.
2.) Ketentuan yang Terkait
Di samping Persyaratan Umum Instalasi Listrik ini, harus pula diperhatikan ketentuan yang terkait dengan dokumen berikut :
a) Undang undang no. 1 tahun 1970 tentang Keselamatan Kerja.
b) Undang-undang No. 15 tahun 1985 tentang Ketenagalistrikan.
c) Undang-undang No. 23 tahun 1997 tentang Pengelolaan Lingkungan Hidup.
d) Peraturan Pemerintah RI No. 10 tahun 1989 tentang Penyediaan dan Pemanfaatan Tenaga Listrik.
e) Peraturan Pemerintah No. 25 tahun 1995 tentang Usaha Penunjang
Tenaga Listrik.
f) Peraturan Menteri Pertambangan dan Energi No. 01.P/40/M.PE/1990 tentang Instalasi Ketenagalistrikan.
g) Peraturan Menteri Pertambangan dan Energi No. 02.P/0322/M.PE/1995
tentang Standardisasi, Sertifikasi dan Akreditasi dalam Lingkungan pertambangan dan energi
3.) Syarat-Syarat Instalasi Listrik
Di samping Persyaratan Umum Instalasi Listrik dan peraturan mengenai kelistrikan yang berlaku, harus diperhatikan pula syarat-syarat dalam pemasangan instalasi listrik, antara lain :
a) Syarat ekonomis
Instalasi listik harus dibuat sedemikian rupa sehingga harga keseluruhan dari instalasi itu mulai dari perencanaan, pemasangan dan pemeliharaannya semurah mungkin, kerugian daya listrik harus sekecil mungkin.
b) Syarat keamanan
Instalasi listrik harus dibuat sedemikian rupa, sehingga kemungkinan timbul kecelakaan sangat kecil. Aman dalam hal ini berarti tidak membahayakan jiwa manusia dan terjaminnya peralatan dan benda benda disekitarnya dari kerusakan akibat dari adanya gangguan seperti:
gangguan hubung singkat, tegangan lebih, beban lebih dan sebagainya.
c) Syarat keandalan (kelangsungan kerja)
Kelangsungan pengaliran arus listrik kepada konsumen harus terjamin secara baik. Jadi instalasi listrik harus direncana sedemikian rupa sehingga kemungkinan terputusnya atau terhentinya aliran listrik adalah sangat kecil.
4) Komponen Pokok Instalasi Listrik
Komponen pokok instalasi listrik adalah perlengkapan yang paling pokok dalam suatu rangkaian listrik. Komponen yang digunakan dalam pemasangan instalasi listrik banyak macam dan ragamnya. Namun, pada dasarnya komponen instalasi listrik dapat dikelompokan sebagai berikut:
a) Bahan penghantar listrik;
b) Bahan Isolasi (Isolator Rol);
c) Pipa Instalasi;
d) Kotak Sambung;
e) Sakelar;
f) Fitting;
g) Perlengkapan Bantu.
5) Penghantar Listrik
Penghantar atau kabel yang sering digunakan untuk instalasi listrik penerangan umumnya terbuat dari tembaga. Penghantar tembaga setengah keras (BCC ½ H = Bare Copper Conductor Half Hard) memiliki nilai tahanan jenis 0,0185 ohm mm²/m degangan tegangan tarik putus
kurang dari 41 kg/mm². sedangkan penghantar tambaga keras (BCCH = Bare Copper Conductor Hard), kekuatan tegangan tariknya 41 kg/mm². Pemuaian tembaga sebagai penghantar adalah dengan pertimbangan bahwa tembaga merupakan suatu bahan yang mempunyai daya hantar
yang baik setelah perak. Penghantar yang dibuat oleh pabrik yang dibuat oleh pabrik terdapat
beraneka ragamnya. Berdasarkan konstruksinya, penghantar diklasifikasikan sebagai berikut:
a) Penghantar pejal (solid); yaitu penghantar yang berbentuk kawat pejal yang berukuran sampai 10 mm². Tidak dibuat lebih besar lagi dengan maksud untuk memudahkan penggulungan maupun pemasangannya.
Gambar 1. Penghantar Pejal
b) Penghantar berlilit (stranded); penghantarnya terdiri dari beberapa urat kawat yang berlilit dengan ukuran 1 mm² – 500 mm².
Gambar 2. Penghantar Stranded
c. Penghantar serabut (fleksibel); banyak digunakan untuk tempat yang sulit dan sempit, alat-alat portabel, alat-alat ukur listrik
11 dan pada kendaraan bermotor. Ukuran kabel ini antara 0,5 mm² - 400 mm².
Gambar 3. Penghantar Serabut
d) Penghantar persegi (busbar); penampang penghantar ini berbentuk persegi empat yang biasanya digunakan pada PHB (Papan Hubung Bagi) sebagai rel-rel pembagi atau rel penghubung. Penghantar ini tidak berisolasi.
Gambar 4. Pengantar Persegi
Adapun bila ditinjau dari jumlah penghantar dalam satu kabel, penghantar dapat diklasifikasikan menjadi:
a) Penghantar simplex; ialah kabel yang dapat berfungsi untuk satu mecam penghantar saja (misal: untuk fasa atau netral saja). Contoh penghantar simplex ini antara lain: NYA 1,5 mm²; NYAF 2,5 mm² dan sebagainya.
b) Penghantar duplex; ialah kabel yang dapat menghantarkan dua aliran (dua fasa yang berbeda atau fasa dengan netral). Setiap penghantarnya diisolasi kemudian diikat menjadi satu menggunakan selubung. Penghantar jenis ini contohnya NYM 2x2,5 mm², NYY 2x2,5mm².
Gambar 5. Kabel NYM
c) Penghantar triplex; yaitu kabel dengan tiga pengantar yang dapat menghantarkan aliran 3 fasa (R, S dan T) atau fasa, netral dan arde. Contoh kabel jenis ini: NYM 3x2,5 mm², NYY 3x2,5 mm² dan sebagainya.
d) Penghantar quadruplex; kabel dengan empat penghantar untuk mengalirkan arus 3 fasa dan netral atau 3 fasa dan pentanahan. Susunan hantarannya ada yang pejal, berlilit ataupun serabut. Contoh penghantar quadruplex misalnya NYM 4x2,5 mm², NYMHY 4x2,5mm² dan sebagainya. Jenis penghantar yang paling banyak digunakan pada instalasi rumah tinggal yang dibangun permanen saat ini adalah kabel rumah NYA dan kabel NYM.
6) Bahan Isolasi (Isolator Rol)
Bahan isolasi atau isolator dibuat dari porselen atau bahan lain yang sedrajat. Misalnya PVC, dengan diameter yang besar ¾”. Pemasangan isolator ini harus kuat sehingga tidak ada gaya mekanis lebih pada hantaran yang ditunjang. Untuk instalasi dalam gedung, bahan ini sering disebut dengan rol isolator yang dipasang pada langit-langit bagian atas. Pemasangan rol isolator ini harus diatur sehingga jarak bebas antara hantaran-hantaran yang berlainan fasa tidak kurang dari tiga sentimeter, dan jarak antara titik-titik tumpunya tidak lebih dari 1 meter.
Gambar 6b. Pemasangan rol isolator
7) Pipa Instalasi
Pipa instalasi berfungsi sebagai pelindung hantaran dan sekaligus perapi instalasi. Pipa instalasi dapat dibedakan menjadi tiga, yaitu pipa baja yang dicat meni (sering disebut pipa union); pipa PVC; pipa fleksibel. Di pasaran, pipa-pipa instalasi terdapat dalam potongan empat meter dengan diameter yang bervariasi. Syarat umum pipa instalasi ialah harus cukup tahan terhadap tekanan mekanis, tahan panas, dan lembab serta tidak menjalarkan api. Selain itu, permukaan luar maupun dalam pipa harus licin dan rata. Pemakaian pipa baja yang berada dalam jangkauan tangan dan dipasang terbuka harus ditanahkan dengan sempurna, kecuali pipa tersebut digunakan untuk menyelubungi kabel bersiolasi ganda, misal NYM. Tindakan ini dimaksudkan sebagai tindakan pengamanan terhadap kemungkinan kegagalan isolasi pada hantaran dalam pipa. Pada ujung bebas, pipa baja harus diberi selubung masuk (tule). Penggunaan pipa PVC memiliki beberapa keuntungan, antara lain:
a) Daya isolasi baik, sehingga mengurangi kemungkinan terjadinya
gangguan tanah;
b) Tahan terhadap hamoir semua bahan kimia, jadi tidak perlu di cat;
c) Tidak menjalarkan nyala api;
d) Mudah penggunaannya.
Kelemahan pipa PVC adalah tidak dapat digunakan pada suhu kerja normal 60°C. Selain itu, di tempat-tempat yang diperlukan, pipa PVC harus dilindungi dari kerusakan mekanis, misalnya pada tempat-tempat penembusan lantai. Pipa yang tidak ditanam dalam dinding harus ditanam dengan baik mengunakan klem yang sesuai dengan jarak antar klem tidak lebih dari satu meter untuk pemasangan lurus.
8) Kotak Sambung
Penyambungan atau pencabangan hantaran listrik pada instalasi dengan pipa harus dilakukan dalam kotak sambung. Hal ini dimaksudkan untuk melindungi sambungan atau percabangan hantaran dari gangguan yang membahayakan. Pada umumnya bentuk sambungan yang digunakan pada kotak sambung ialah sambungan ekor babi (pig tail), kemudian
setiap sambungan ditutup dengan las dop setelah diisolasi. Selain itu, pada hantaran lurus memanjang perlud ipasang kotak sambung lurus (kotak tarik) setiap panjang tertentu penarik kabel untuk memudahkan penarikan hantaran. Pada kotak tarik ini apabila tidak terpaksa, hantaran tidak boleh dipotong kemudian disambung lagi.
Macam-macam kotak sambung antara lain seperti terlihat pada gambar 7.
a) Kotak ujung; sering disebut pula dos tanam biasanya digunakan sebagai tempat sambungan dan pemasangan saklelar atau stop kontak/kotak kontak,
b) Kontak tarik; digunakan pada pemasangan pipa lurus memanjang (setiap 20 m) yang fungsinya untuk memudahkan penarikan hantaran ataupun tempat penyambungan,
c) Kotak sudut; sama seperti kotak tarik, hanya penempatannya berbeda yaitu dipasang pada sudut-sudut ruang,
d) Kotak garpu; dipakai untuk percabangan sejajar,
e) Kotak T atas; pemasangannnya disesuaikan dengan penempatannya,
f) Kotak T kiri; pemasangannnya disesuaikan dengan penempatannya,
g) Kotak T kanan; pemasangannnya disesuaikan dengan penempatannya,
h) Kotak T terbalik; pemasangannnya disesuaikan dengan penempatannya,
i) Kotak silang; disebut juga cross dos (x dos) untuk empat percabangan,
j) Kotak cabang lima digunakan untuk lima percabangan dengan empat cabang sejajar.
Gambar 7. Macam-macam kotak sambung
9) Sakelar
Fungsi sakelar adalah untuk menghubungkan atau memutuskan arus listrik dari sumber ke pemakai/beban. Sakelar terdiri dari banyak jenis tergantung dari cara pemasangan, sistem kerja, dan bentuknya. Berdasarkan sisten kerjanya, sakelar dibagi menjadi tujuh.
a) Sakelar tunggal
Fungsi sakelat tunggal adalah untuk menyalakan dan mematikan lampu. Pada sakelar ini terdapat dua titik kontak yang menghubungkan hantaran fasa dengan lampu atau alat yang lain.
Gambar 8. Bentuk Sakelar
b) Sakelar kutub ganda (dwi kutub)
Titik hubung dwi kutub ada empat, biasanya digunakan untuk memutus atau menghubungkan hantaran fasa dan nol secara bersama-sama. Sakelar ini biasanya digunakan pada boks sekering satu fasa.
c) Sakelar kutub tiga (tri kutub)
Sakelar mempunyai enam titik hubung untuk menghubungkan atau memutuskan hantara fasa (R, S, dan T) secara bersama-sama pada sumber listrik 3 fasa.
d) Sakelar kelompok
Kegunaan sakelar kelompok adalah untuk menghubungkan atau memutuskan dua lampu atau dua golongan lampu secara bergantian, tetapi kedua golongan tidak dapat menyala bersamaan. Umumnya sakelar ini dipakai sebagai penghubung yang hemat pada kamarkamar
hotel, asrama, dan tempat-tempat yang memerlukan.
e) Sakelar seri
Sakelar seri adalah sebuah sakelar yang dapat menghubungkan dan memutuskan dua lampu, atau dua golongan lampu baik secara bergantian maupun bersama-sama. Sakelar seri sering disebut pula
sakelar deret.
f) Sakelar tukar
Sakelar tukar sering disebut dengan sakelar hotel karena banyak dipakai dipakai di hotel-hotel untuk menyalakan dan memadamkan dua lampu atau dua golongan lampu secara bergantian. Selain itu, sakelar dapat pula digunakan untuk menyalakan dan memadamkan
satu lampu atau satu golongan lampu dari dua tempat dengan menggunakan dua sakelar tukar.
g) Sakelar silang
Untuk melayai satu lampu atau satu golongan lampu agar dapat dinyalakan dan dimatikan lebih dari dua tempat dapat dilakukan dengan mengkombinasikan antara sakelar tunggal dan sakelar silang. Yang harus diingat, sakelar pertama dan terakhir adalah sakelar tukar sedangkan sakelar di antaranya adalah sakelar silang
Gambar 9. Macam-macamSsakelar, Lambang, Konstruksi, dan Pengawatannya
Berdasarkan cara pemasangannya, sakelar dibedakan atas dua jenis, yaitu sakelar yang dipasang di luar tembok dan sakelar yang dipasang di
dalam tembok. Pemasangan sakelar di luar tembok (out bow) dilengkapi denga roset
sebagai tempat dudukan. Pemasangan sakelar di dalam tembok (inbow) memerlukan mangkuk
sakelar (dos tanam) baik yang terbuat dari plat besi maupun plastik (PVC), sebagai dudukan sakelar. Berdasarkan cara bekerjanya, sakelar dapat diklasifikasikan menjadi:
a) Sakelar tarik; biasanya terdapat pada fitting lampu dan untuk mengoperasikan digunakan seutas tali.
b) Tombol tekan; bila ditekan maka kontak terhubung dan begitu dilepas maka kontak akan terputus kembali. Tombol biasannya dipakai untuk bel listrik, tetapi ada pula tombol yang dalam keadaan normal terhubung dan saat ditekan terputus. Misalnya tombol yang terpasang pada pintu alnmari es untuk penyalaan lampunya.
c) Sakelar jungkit; saat ini lebih banyak digunakan untuk menggantikan sakelar putar karen pengoperasiannya mudah.
d) Sakelar putar, sudah jarang digunakan karena sudah ada penggantinya yaitu sakelar jungkit. Pemakaiannya hanya pada tempat tertentu, misalnya: box sekering.
10) Fitting
Fitting adalah suatu komponen listrik tempat menghubungkan lampu dengan kawat-kawat hantaran. Ada bermacam-meacam fitting, di antaranya fitting duduk, fitting gantung, fitting bayonet, dan fitting kombinasi stop kontak seperti tampak gambar 10. Fitting terbuat dari bahan isolasi, yaitu bakelit atau porselen. Digunakan dari cara pemasangannya, ada yang disebut fitting duduk dan fitting gantung
Gambar 10. Aneka Jenis Fitting
Fitting duduk dipasang pada dinding ataupun langit-langit. Bila pemasangannya tidak dapat dilakukan secara langsung, perlu dipasang roset, yaitu kayu maupun plastik sebagai tempat dudukannya. Pemasangan fitting gantung tergantung pada langit-langit dengan menggunakan kabel snoer atau penguat tali rami. Tali rami berfungsi sebagai penahan agar kabel tidak menanggung beban. Bila ditinjau dari konstruksinya, fitting dibagi menjadi dua jenis, yaitu fitting ulir dan fitting tusuk.
a) Fitting ulir; cara memasang lampu pada fitting dilakukan dengan memutar lampu pada fitting. Fitting semacam ini juga sering disebut Fitting Edison, yang tersedia dalam berbagai macam ukuran disesuaikan dengan lampunya.
b) Fitting tusuk; cara memasang lampunya dengan jalan menusukkan ke fitting. Fitting jenis ini terdapat dua macam, yaitu fitting yang kaki
kaki lampunya langsung dijepit atau disebut fitting bayonet dan jenis yang lain ialah fitting tusuk putar, yaitu fitting yang setelah kaki lampu ditusukkan kemudian diputar seperempat lingkaran atau disebut Fitting Goliath. Fitting jenis Bayonet dan Goliath biasannya hanya digunakan pada kendaraan, misal kapal laut, motor, dan mobil.
11) Kotak Pembagi Daya Listrik (PHB)/Distribusi Panel (DP)
Panel bagi di dalam instalasi listrik rumah/gedung merupakan peralatan yang berfungsi sebagai tempat membagi dan menyalurkan tenaga listrik ke beban yang memerlukan agar merata dan seimbang. Di dalam panel bagi terdapat komponen antara lain rel (busbar), sakelar utama, pengaman, pengaman, alat-alat ukur dan lampu indikator.
12) Rating Pengaman
Rating pengaman yang dipakai menurut PUIL harus sama dengan atau lebih besar dari arus nominal beban (I pengaman > I nominal). Pengaman yang digunakan dalam instalasi listrik adalah pemutus rangkaian (MCB) untuk pengaman tiap kelompok beban dan pemutus
rangkaian pusat (MCCB) untuk pengaman seluruh kelompok beban. Besarnya rating arus MCB maupun MCB diperhitungkan arus beban yang dipikul atau dipasang di dalam instalasi agar memenuhi syarat keamanan.
13) Perlengkapan Bantu
Untuk memasang peralatan-peralatan seperti dibahas diatas, diperlukan beberapa perlengkapan bantu seperti:
a) Klem (sengkang)
Klem digunakan untuk menahan pipa agar dapat dipasang pada dinding atau langit-langit. Klem dapat terbuat dari besi maupun bahan PVC. Ukurannya disesuaikan dengan ukuran pipa. Klem dipasang menggunakan sekrup atau paku dengan jarak antara satu dengan lainnya tidak lebih dari satu meter untuk pemasangan pipa lurus memanjang. Adapun jarak klem dengan kotak sambung, sakelar, stop kontak atau komponen lainnya maksimum 10 cm. Untuk meninggikan pemasangan pipa dipakai klem dengan pelana.
PRINSIP DASAR INSTALASI LISTRIK
2. Reliability ( Keandalan)
3. Accessibility (Kemudahan)
4. Availibility (Ketersediaan)
5. Impact of Environment (pengaruh lingkungan)
6. Economic (Ekonomi)
7. Esthetic (Keindahan)
SAFETY - KEAMANAN
Instalasi listrik harus dipasang dengan benar berdasarkan standar dan peraturan yang ditetapkan oleh SPLN, PUIL2000 serta IEC (International Electrotechnical Commission) dengan tujuan untuk keamanan dan keselamatan bagi mahluk hidup, harta benda dan instalasi listrik itu sendiri.
Sistem instalasi listrik dinyatakan aman bagi mahluk hidup, harta benda maupun pada sistem instalasi listrik itu sendiri, bila dilengkapi dengan sistem proteksi yang sesuai dan mempunyai keandalan yang tinggi dalam merespon gangguan yang terjadi baik secara langsung maupun tidak langsung.
Contoh : Suatu sistem instalasi listrik harus dilengkapi dengan sistem pentanahan/ pembumian agar manusia terhindar dari sentuhan tidak langsung akibat kejutan listrik yang tidak terduga, karena adanya kebocoran arus listrik pada body peralatan listrik.
Reliability ( Keandalan)
Kondisi yang diperlukan adalah keandalan
terhadap :
Unjuk kerja sistem
Pengoperasian sistem
Peralatan yang digunakan Suatu sistem instalasi listrik dinyatakan andal bila
operasi sistem kelistrikan dapat bekerja selama mungkin dan dapat diatasi dengan cepat bila terjadi ganngguan.
Accessibility (Kemudahan)
Kondisi yang harus dicapai adalah kemudahan terhadap :
Pengoperasian, Perawatan & Perbaikan sistem
Pemasangan dan penggantian peralatan sistem
Pengembangan dan perluasan sistem
Kemudahan pada sistem instalasi listrik dinyatakan tercapai apabila pengoperasian suatu sistem tidak memerlukan skill tinggi, cepat dan tepat dalam pemasangan peralatan sistem serta mudah dalam melaksanakan perawatan dan perbaikan sistem.
Contoh : Agar memudahkan dalam mencari trouble pada suatu sistem kontrol , maka sistem instalasi panel kontrol harus dilengkapi label pada peralatan listrik yang terpasang, adanya penomoran pada terminal, kabel dan pengawatan peralatan yang disesuaikan dengan gambar/diagram kontrol dan instalasi .
Availibility (Ketersediaan)
Merupakan hal yang penting dalam suatu sistem instalasi listrik, karena berkaitan dengan kemungkinan pengembangan ataupun perluasan proses kontrol/mesin yang meliputi ketersediaan terhadap :
Alat
Tempat/Ruang
Daya
Suatu sistem instalasi listrik dinyatakan mempunyai ketersediaan apabila :
Adanya cadangan peralatan listrik sebagai alat pengganti bila terjadi kerusakan pada peralatan yang dalam kondisi operasi, baik yang telah tersedia dilapangan umum maupun yang dengan mudah didapat dipasaran. Adanya cadangan tempat atau ruang yang diperlukan untuk menempatkan peralatan tambahan, karena adanya pengembangan ataupun perluasan sistem. Adanya cadangan daya pada sistem instalasi yang dapat langsung digunakan tanpa harus mengganti ataupun menambah kabel pada sistem instalasi .
Impact of Environment (Pengaruh lingkungan)
Perencanaan sistem instalasi listrik harus mempertimbangkan dampak yang terjadi pada lingkungan sekitar dimana sistem instalasi dipasang, yang meliputi :
Pengaruh Lingkungan terhadap peralatan
Pengaruh Peralatan terhadap lingkungan
Bila peralatan listrik dipasang pada lingkungan tertentu, harus dipertimbangkan
apakah peralatan itu mempunyai pengaruh negatip terhadap lingkungan sekitarnya,
Bila ada kemungkinan mengganggu atau merusak lingkungan maka harus dirancang
agar pengaruh negatip yang ditimbulkan oleh peralatan listrik dapat dihilangkan atau
diperkecil.
Contoh : Gardu listrik dipasang pada suatu taman yang indah, maka harus dipertimbangkan konstruksi bangunan gardu listrik agar tidak merusak keindahan taman.
Lingkungan dimana peralatan listrik atau sistem instalasi listrik dipasang harus dipertimbangkan apakah lingkungan dapat merusak peralatan/instalasi listrik yang ada disekitarnya. Bila ada kemungkinan dapat merusak peralatan/instalasi, maka harus dipilih peralatan /bahan instalasi yang tidak dapat terpengaruh terhadap kondisi lingkungan tersebut.
Contoh : 1- Kabel instalasi dipasang pada lingkungan yang dipengaruhi oleh
bahan kimia tertentu, maka harus dipilih bahan isolasi kabel yang tahan
terhadap pengaruh bahan kimia tersebut
2 -Peralatan listrik dipasang pada lingkungan yang lembab, maka harus
digunakan peralatan listrik yang mempunyai IP (Index Protection) tertentu.
Economic (Ekonomi)
Perencanaan sistem instalasi listrik perlu mempertimbangkan kondisi operasional jangka panjang agar dapat dihemat biaya-biaya yang dikeluarkan terhadap :
Pemeliharaan dan perluasan sistem
Pemakaian/penggantian peralatan
Pengoperasian sistem
Kondisi ekonomis pada suatu sistem instalasi dikatakan berhasil bila efesien dan efektip terhadap penggunaan daya listrik, peralatan yang digunakan cukup andal dan kecilnya delay time pada pengoperasian proses produksi.
Contoh : Bila proses produksi banyak menggunakan beban induktif, agar penggunaan daya listrik efektip maka sistem instalasi listriknya harus dilengkapi dengan kompensasi daya listrik, yaitu dengan memasang Capasitor Bank.
Esthetic (Keindahan)
Suatu hal yang penting pada sistem instalasi listrik adalah keindahan dan kerapian, yang meliputi :
Kerapian dalam pemasangan dan pengawatan
Keserasian dalam penggunaan/pemilihan peralatan
Keserasian dan keindahan tata letak dan kenyamanan ruang operasi
Kerapian dalam pemasangan dan pengawatan akan menimbulkan kemudahan dan kejernihan pikiran dalam melaksanakan perawatan dan perbaikan pada sistem instalasi .
Keserasian dalam pemilihan dan penggunaan/pemilihan peralatan yang disesuaikan dengan ukuran, bentuk dan warna yang sedemikian rupa, sehingga menimbulkan pemandangan yang indah dan nyaman.
Keserasian dan keindahan tata letak akan menimbulkan mosaik yang memberikan kenyamanan serta menghindari kebosanan bagi pelaksana operasi pada ruang dimana suatu kendali sistem kontrol dipasang.
Kondisi tersebut diatas akan menimbulkan gairah dan ketenangan kerja serta disiplin kerja akan selalu terjaga.
Motor Listrik 3 Fasa Putar Kanan Kiri
Rangkaian pengendali motor ini, dapat memutar motor kearah kanan dan kiri, menggunakan 2 buah magnetic kontaktor, yang akan di tukar salah satu fasanya, dan menukar NC (normaly close) pada rangkaian kontrol (lihat gambar). pada saat NO (normaly open) S2 ditekan maka K1 bekerja dan motor akan berputar, dan saat NO S3 ditekan maka NC S3 akan memutuskan K1, dan K2 akan bekerja serta motor akan berputarke arah sebaliknya, tekan tombol S1 untuk berhenti/ memutuskan rangkain.
Keterangan gambar : F1,2,3 =MCB 3 fasa
F4 =MCB 1 fasa
F0 =TOR(thermal overload relay)
K1,2 =Magnetic Kontaktor
S1,2,3 =Tombol/ Push Button
M =Motor 3 fasa
F4 =MCB 1 fasa
F0 =TOR(thermal overload relay)
K1,2 =Magnetic Kontaktor
S1,2,3 =Tombol/ Push Button
M =Motor 3 fasa
Rangkaian Water Level Control (WLC)
Rangkaian Water Lever Control atau yang sering disingkat dengan WLC atau rangkaian kontrol level air merupakan salah satu aplikasi dari rangkaian konvensional dalam bidang tenaga listrik yang diaplikasikan pada motor listrik khususnya motor induksi untuk pampa air. Fungsi dari rangkaian ini adalah untuk mengontrol level air dalam sebuah tangki penampungan yang banyak dijumpai di rumah-rumah atau bahkan disebuah industri di mana pada level tertentu motor listrik atau pompa air akan beroperasi dan pada level tertentu juga pompa air akan mati. Untuk mengontrol level air dalam tangki penampungan dapat menggunakan dua buah pelampung yang mana masing-masing dari pelampung tersebut menentukan batas atas dan batas dari level air. Jadi pada saat anda sedangkan menjalankan pompa air, dengan mengaplikasikan rangkaian Water Level Control pada pompa air yang anda gunakan, anda tidak perlu menunggu hanya untuk mematikan pompa air pada saat tangki atau bak air penuh karena apabila air dalam tangki sudah penuh maka pompa akan padam dengan sendirinya tanpa harus menekan tombol stop. Demikian juga apa bila air dalam tangki atau bak mulai berkurang sesuai dengan batas yang telah ditentukan maka pompa akan jalan dengan sendirinya. Dengan demikian ada bisa melakukan kegiatan yang lain yang lebih berguna, misalnya nonton acara gossip di Channel TV kesayangan anda sambil menikmati sedapnya pisang goreng yang dibalut dengan sambal terasi yang rasanya benar-benar nendang bangets. Lupakan tentang pisang goreng, dan untuk lebih jelasnya perhatikan bagaimana sebuah pelampung dapat bekerja pada sebuah rangkaian Water Level Control sebagai berikut :
Gambar 1. Prinsip Kerja PelampungPenjelasan dari gambar di atas :
Pada kondisi (1) kita anggap bahwa untuk pertama beroperasi air di dalam tangki seperti yang terlihat pada gambar. Dengan keadaan yang demikian, maka otomatis Pelampung 1 yang difungsikan sebagai batas atas air dan Pelampung 2 yang difungsikan sebagai batas bawah akan menggantung pada sebuah tali pelampung sehingga menyebabkan kontak pelampung yang berada di antara 2 dan A1 akan menutup karena gaya berat dari kedua pelampung. Akibatnya, motor pompa air akan beroperasi.
Ketika pompa air mulai mengisi tangki/bak maka pelampung 2 akan terangkat ke atas atau terapung seperti yang terlihat dalam gambar pada kondisi (2). Meskipun pelampung 2 sudah terapung, kontak pelampung tetap pada posisi close, pabrik sudah merancang dengan sedekian rupa sehingga hal demikian bisa terjadi, pelampung 1 masih mampu untuk menutup kontak pelampung sehingga pompa tetap beroperasi.
Seiring dengan semakin bertambahnya air tangki maka Pelampung 2 akan semakin bergerak ke atas sesuai dengan volume air dalam tangki tersebut. Apabila level air telah sampai pada Pelampung 1 seperti terihat dalam gambar untuk kondisi (3) maka Pelampung 1 akan terangkat ke atas atau terapung bersama-sama dengan pelampung 2. Akibatnya, kontak pelampung antara 2 dan A1 akan membuka dan motor atau pompa air akan mati. Jadi, bukan Pelampung 2 yang mendorong Pelampung 1 sehingga kontak pelampung terbuka (open).
Apabila air di dalam tangki atau bak mulai berkurang atau lebih rendah dari Pelampung 1, maka pelampung 1 akan menggantung pada kontak pelampung seperti lihat pada gambar untuk kondisi (4). Meskipun Pelampung 1 sudah menggantung, akan tetapi kontak pelampung masih tetap pada kondisi open karena Pelampung 1 belum cukup berat untuk menutup kontak tersebut. Jika air sudah benar-benar berkurang dalam tangki sesuai dengan batas bawah yang telah ditentukan maka pelampung 2 akan menggantung seperti pada kondisi (1) bersama-sama dengan pelampung 1. Kolaborasi kedua pelampung tersebut menghasil berat yang cukup untuk menutup kontak pelampung antara 2 dan A1 sehingga pompa air dapat berjalan atau beroperasi. Setelah itu ke kondisi (2), (3), (4), dan seterusnya.
Berikut ini adalah gambar rangkaian kendali dan sekaligus rangkaian daya dari Water Level Control. Rangkaia
ini terdiri dari dua bagian yaitu menggunakan remote untuk mengoperasikan (menjalankan dan mematikan)
ompa air dan menggunakan pelampung untuk mengoperasikan pompa air secara otomatis.
Gambar 2. Rangkaian kendali dan rangkaian daya
Langkah-langkah kerja rangkaian Water Level Control
1. Diasumsikan bahwa tombol emergency, MCB rangkaian control dan MCB rangkaian daya tertutup atau sudah pada posisi on.
Pada keadaan normal kontak overload 95 – 96 tertutup dan kontak 97 – 98 terbuka
Posisi 1 yaitu pada saat selektor switch dipindahkan pada posisi 1-2 maka lampu indikator L2 akan menyala yang menandakan bahwa yang bekerja adalah pelampung (otomatis)
Ketika air di dalam bak telah kosong atau berkurang, pelampung akan tertarik ke bawah dan menutup kontak yang terdapat pada pelampung sehingga arus akan mengalir pada kontaktor K1 dengan demikian kontak utama 1–2 pada K1 akan menutup sedangkan kontak 3-6 pada RL (Relay) tetap terbuka sehingga motor akan berputar yang di tandai dengan menyalanya lampu indikator L4
Apabila motor mengalami kelebihan beban maka kontak 95-96 akan membuka dan kontak 97-98 akan menutup sehingga lampu indikator L3 yang menandakan kelebihan beban akan menyala dan pada saat itu motor akan berhenti berputar.
Jika air di dalam bak telah penuh atau telah mencapai level yang telah ditentukan maka pelampung di dalam air akan terangkat ke atas sehingga membuka kontak yang terdapat pada pelampung tersebut dan motor akan akan berhenti berputar.
Proses selanjutnya kembali ke langkah nomor 4.
Untuk posisi 2 selektor switch dipindahkan pada posisi 3-4 maka lampu indikator L1 akan langsung menyala yang menandakan bahwa operasi motor dilakukan secara remote (menyalakan dan mematikan motor) dan pada saat itu pelampung tidak akan bekerja
Untuk menyalakan motor tekan push button Son
Kontak 1-4 akan menutup karena koil 2-10 relay (RL) mendapat energy listrik sehingga arus akan mengalir melalui kontak 1-4 tersebut walaupun saklar Son dilepas
Dengan demikian kontak 3-6 dan 8-11 akan menutup sedangkan kontak 1-2 pada K1 tetap terbuka, dengan demikian motor akan berputar yang ditandai dengan menyalanya lampu indikator L4
Apabila motor mengalami kelebihan beban maka kontak 95-96 akan membuka dan kontak 97-98 akan menutup sehingga lampu indikator L3 yang menandakan kelebihan beban akan menyala dan pada saat itu motor akan berhenti berputar.
Tekan push button Soff untuk mematikan motor.
Baik untuk operasi dengan remote ataupun secara otomatis (dengan pelampung) apabila ada hal-hal yang tidak inginkan terjadi pada saat motor beroperasi dapat langsung menekan tombol emergency sehingga seluruh rangkaian akan padam.
Rangkaian Water Level Control di atas belumlah sempurna, anda bisa memodifikasinya supaya menjadi lebih
baik lagi dan juga lebih andal pastinya. Ini cuma salah satu contoh saja, jika anda ingin berusaha sedikit saja maka
hasilnya pasti akan lebih bagus lagi dan tentunya memakai desain yang dibuat sendiri akan memberikan kepuasan
yang tersendiri pula.
AdaUntuk pengoperasian pompa dengan remote, saya menggunakan relay yang dalam rangkaian disingkat dengan RL dengan pertimbangan penggunaan remote hanyalah sebagai cadangan jika pelampung mengalami kegagalan dalam pengoperasiannya. Anda dapat menggantinya dengan kontaktor. Jika anda menggunakan relay, relaynya harus disesuaikan dengan kapasitas arus dari motor pompa. Kalau tidak sesuai, bisa-bisa relaynya hangus dan anda akan merogoh kocek lebih dalam lagi. Menyedihkan!
Motor yang digunakan pada rangkaian di atas adalah motor induksi 1 fasa. Jika anda menggunakan motor induksi 3 fasa, maka rangkaian kontrolnya akan lebih rumit lagi. Silahkan anda berkreasi sendiri.
Pada kondisi (3) dari gambar pelampung, usahakan jangan sampai tali pada pelampung terjadi lilitan yang menyebabkan terbentuknya sebuah simpul sehingga kedua pelampung berkumpul pada satu titik pada tali pelampung. Hal ini akan menyebabkan pompa mati menyala dalam waktu yang relatif singkat. Apabila hal ini terjadi, maka lampu indikator L4 pada gambar akan berkedip-kedip. Keuntungannya, anda akan melihat nyala lampu indikator yang berkedip-kedip pada panel sehingga anda tidak perlu membeli lampu hias di toko kesayangan anda. Kerugiannya, anda akan berteriak histeris sampai nadanya mungkin mencapai 7 oktaf (melebihi Gita Gutawa) karena melihat tagihan rekening listrik anda yang meningkat dari biasanya jika anda membiarkan hal tersebut terus berlangsung. Tentu saja penyebabnya adalah motor mati menyala dalam waktu yang relative singkat, yang mana kita tahu bersama bahwa arus start dari motor induksi bisa 5 sampai 7 kali lebih besar dari arus nominalnya yang mana juga akan mempengaruhi putaran kWh meter anda.
Pengalaman adalah guru yang baik tetapi belajar dari pengalaman orang lain adalah Guru Terbaik. Jadi, jangan segan-segan untuk berlajar dari orang-orang yang sudah berpengalaman. So, take my advice and Go On! Thanks
Bacaan sederhana yang sering dikunjungi orang-orang kreatif, disini anda akan mendapatkan sedikit tehnik dan cara kerja dari sebuah rangkaian kontrol/ kendali dengan menggunakan beban Motor 3 phasa (Sebuah mesin penggerak dengan catu daya 3 phasa sebagai sumber tenaga):
Cara kerja motor 3 phasa :
1. motor 3 phasa akan bekerja /berputar apabila sudah dihubungkan dalam hubungan tertentu .
2. mendapat tegangan (jala-jala /power /sumber) sesuai dengan kapasitas motornya.
Bekerjanya hanya mengenal 2 hubungan yaitu :
a. motor bekerja bintang /star (Y)
berarti motor harus dihubungkan bintang baik secara langsung pada terminal maupun melalui rangkaian kontrol.
b. Motor bekerja segitiga /Delta (▲)
berarti motor harus dihubungkan segitiga baik secara langsung pada terminal maupun melalui rangkaian kontrol.
Kecuali :mesin-mesin yang berkapasitas tinggi diatas 10 HP, maka motor tersebut wajib bekerja segitiga (▲) dan harus melalui rangkaian kontrol star delta baik secara mekanik , manual, konvensional, digital , PLC.
Dimana bekerja awal (start) motor tersebut bekerja bintang hanya sementara, selang berapa waktu barulah motor bekerja segitiga dan motor boleh dibebani.
Cara menghubungkan motor dalam hubungan bintang (Y) :
1. Cukup mengkopelkan /menghubungkan salah satu dari ujung-ujung kumparan phasa menjadi satu
2. Sedangkan yang tidak dihhubungkan menjadi satu dihubungkan kesumber tegangan.
Cara menghubungkan motor dalam hubungan segitiga (▲) :
1. ujung-ujung pertama dari kumparan phasa I dihubungkan dengan ujung kedua dari kumparan phasa III
2. ujung-ujung pertama dari kumparan phasa II dihubungkan dengan ujung kedua dari kumparan phasa I
3. ujung-ujung pertama dari kumparan phasa III dihubungkan dengan ujung kedua dari kumparan phasa II
4. Sedangkan untuk kesumber tegangan terserah kita menghubungkannya , boleh melalui ujung –ujung pertama atau ujung-ujung kedua.
Cara penyambungan /pengkonekan ujung-ujung kumparan phasa system Direct On Line(DOL) dilihat dari tegangan jala-jala dengan plat nama pada motor.
No Jala-jala Nama plat motor Hubungan /koneksi
1 380 V 380 V /220V Y (bintang) tegangan di motor 220 V
2 380 V 220V /380 V Y (bintang) tegangan di motor 220 V
3 220 V 220V /380 V ▲ (segitiga) tegangan di motor 220 V
4 220 V 380 V /220V ▲ (segitiga) tegangan di motor 220 V
5 380 V 380 V Sebagai pengaman kita hubungkan (Y),bila tegangan kurang kita hubungkan ▲
6 380 V 380 V /440 V Motor harus bekerja ▲ karena kapasitas motor sebenarnya 380 V
Cara kerja motor 3 phasa :
1. motor 3 phasa akan bekerja /berputar apabila sudah dihubungkan dalam hubungan tertentu .
2. mendapat tegangan (jala-jala /power /sumber) sesuai dengan kapasitas motornya.
Bekerjanya hanya mengenal 2 hubungan yaitu :
a. motor bekerja bintang /star (Y)
berarti motor harus dihubungkan bintang baik secara langsung pada terminal maupun melalui rangkaian kontrol.
b. Motor bekerja segitiga /Delta (▲)
berarti motor harus dihubungkan segitiga baik secara langsung pada terminal maupun melalui rangkaian kontrol.
Kecuali :mesin-mesin yang berkapasitas tinggi diatas 10 HP, maka motor tersebut wajib bekerja segitiga (▲) dan harus melalui rangkaian kontrol star delta baik secara mekanik , manual, konvensional, digital , PLC.
Dimana bekerja awal (start) motor tersebut bekerja bintang hanya sementara, selang berapa waktu barulah motor bekerja segitiga dan motor boleh dibebani.
Cara menghubungkan motor dalam hubungan bintang (Y) :
1. Cukup mengkopelkan /menghubungkan salah satu dari ujung-ujung kumparan phasa menjadi satu
2. Sedangkan yang tidak dihhubungkan menjadi satu dihubungkan kesumber tegangan.
Cara menghubungkan motor dalam hubungan segitiga (▲) :
1. ujung-ujung pertama dari kumparan phasa I dihubungkan dengan ujung kedua dari kumparan phasa III
2. ujung-ujung pertama dari kumparan phasa II dihubungkan dengan ujung kedua dari kumparan phasa I
3. ujung-ujung pertama dari kumparan phasa III dihubungkan dengan ujung kedua dari kumparan phasa II
4. Sedangkan untuk kesumber tegangan terserah kita menghubungkannya , boleh melalui ujung –ujung pertama atau ujung-ujung kedua.
Cara penyambungan /pengkonekan ujung-ujung kumparan phasa system Direct On Line(DOL) dilihat dari tegangan jala-jala dengan plat nama pada motor.
No Jala-jala Nama plat motor Hubungan /koneksi
1 380 V 380 V /220V Y (bintang) tegangan di motor 220 V
2 380 V 220V /380 V Y (bintang) tegangan di motor 220 V
3 220 V 220V /380 V ▲ (segitiga) tegangan di motor 220 V
4 220 V 380 V /220V ▲ (segitiga) tegangan di motor 220 V
5 380 V 380 V Sebagai pengaman kita hubungkan (Y),bila tegangan kurang kita hubungkan ▲
6 380 V 380 V /440 V Motor harus bekerja ▲ karena kapasitas motor sebenarnya 380 V
Kesimpulan :
1. Bahwa dari berbagai data kapasitas tegangan yang tercantum pada plat motor, sesungguhnya kapasitas tegangan pada motor tersebut adalah tegangan yang rendah.
2. Putaran motor tidak tergantung pada besar kecilnya tegangan input melainkan tergantung dari jumlah kutup (pok), makin banyak jumlah kutup makin sedikit putarannya atau sebaliknya.
3. Keburukan motor 3 phasa yaitu apabila bekerja diatas kemampuan PK yang tersedia, motor tersebut langsung mendengung dan berhenti, berbeda dengan motor DC seri yang makin bertambah beban maka motor berputar menyesuaikan bebannya.
4. Apabila salah satu tegangan input putus maka motor akan bekerja tidak normal/mendengung .
5. Apabila pada pengkonekkan bintang /segitiga salah pengkonekkan pada salah satu ujung-ujung kumparan phasa maka akan mengakibatkan bekerja tidak normal (mendengung/bahkan konslet)
6. Untuk mengukur banyaknya putaran motor (rpm)dengan alat TACOMETER.
7. Mengukur kondisi isolasi email(kumparan)masih baik atau tidak ataupun terjadi tegangan tembus kita gunakan alat ukur MEGER dan sekarang disebut INSULATION TESTER.ingat nilai isolasi yang bagus dihitung setiap 1000Ω perVolt dan satuannya harus Mega.
8. Mengukur baik/buruknya pembumian /arde /ground/massa dengan menggunakan EARTH TESTER atau menggunakan dim meter karena nilai arde yang bagus nilainya harus sekecil mungkin bahkan mendekati 0, maksimal 5 Ω, untuk segera mengetahui ardenya bagus atau tidak, cukup dengan menggunakan AVOMETER yaitu tegangan antara phasa dengan nol dan phasa dengan arde harus sama.
8. Mengukur baik/buruknya pembumian /arde /ground/massa dengan menggunakan EARTH TESTER atau menggunakan dim meter karena nilai arde yang bagus nilainya harus sekecil mungkin bahkan mendekati 0, maksimal 5 Ω, untuk segera mengetahui ardenya bagus atau tidak, cukup dengan menggunakan AVOMETER yaitu tegangan antara phasa dengan nol dan phasa dengan arde harus sama.
9. Menghitung besarnya daya menggunakan rumus P = E.I.cos q
10. Untuk mennghitung besarnya daya setiap PK (HP) pada motor.Prinsip kerja motor 3 phasa dan terjadinya slip
Jika kumparan 3 phasa dari motor 3 phasa dihubungkan dengan jala-jala 3 phasa, maka pada kumparan stator tersebut timbul medan magnet putaran ns (putaran sinkron), medan magnet ini memotong batang-batang konduktor pada rotor sehingga timbul GGL (Gaya Gerak Listrik). karena batang-batang konduktor tersebut dihubungkan singkat maka akan terjadi arus induksi pada batang tersebut sehingga menghasilkan medan magnet pada batang tersebut .
Medan magnet pada rotor berinteraksi dengan medan magnet pada stator terjadilah putaran (nr) = putaran rotor.
Karena prosesnya berdasarkan induksi maka rotor ini disebut motor induksi, syaratnya nr tidak sama dengan ns, Berarti terjadi perbedaan antara nr dan ns yang disebut dengan Slip
ns - nr
SLIP (%) = ns x 100 %
Berikut ini merupakan rangkaian utama dalam menjalankan motor 3 Fase dengan hubungan STAR-DELTA Otomatis.
Dan berikut ini merupakan rangkaian kendali dalam menjalankan motor 3 Fase dengan hubungan STAR-DELTA Otomatis.
Mengoperasikan Motor 3 Fasa dengan Sistem KendaliMengoperasikan Motor 1 Fasa
Mengoperasikan Motor 1 Fasa
Dalam mengoperasikan motor 1 fasa dengan kendali elektromagnetik, dibutuhkan kontaktor magnet, MCB, dan tombol ON/ OFF (saklar tekan) untuk alat kontrolnya. Dengan kontaktor magnet, motor 1 fasa jenis split phasa dapat dijalankan dari jarak jauh, kontaktor dapat diletakkan pada tempat yang jauh dari operator. Sedangkan operator hanya mengendalikan tombol start untuk menjalankan dan tombol stop untuk mengendalikan. Dengan demikian operator dapat bekerja ditempat yang aman.
Dari gambar rangkaian kontrol dan daya, terlihat kontak-kontak kontaktor magnet dipakai sesuai keperluannya. Pada rangkaian kontrol, fasa dihubungkan ke MCB 1 fase, kemudian melalui tombol OFF, menuju ke tombol ON, yang kemudian menuju coil pada kontaktor dan berakhir di netral, karena sakelar ON yang digunakan merupakan sakkelar tombol, maka dipakai sakelar pengunci/ bantu yang terhubung pararel ke kontak bantu kontaktor NO (Normally Open). Sedangkan pada rangkaian daya, perjalanannya yaitu dari Fasa melalui MCB dan menuju ke kontaktor (pada kontak utama), dan dari kontak utama menuju motor 1 fasa. Salah satu masukan kontak utama pada kontaktor dihubungkan melalui sumber netral dan keluarannya dihubungkan ke motor listrik. Rangkain Kontrol
Rangkaian UtamaRangkaian Pengawatan
Langganan:
Postingan (Atom)